Using properties of determinants,prove that ∣∣ ∣∣a2+2a2a+112a+1a+21331∣∣ ∣∣=(a−1)3.
OR find matrix A such that ⎛⎜⎝2−110−34⎞⎟⎠A=⎛⎜⎝−1−81−2922⎞⎟⎠.
Let △=∣∣ ∣∣a2+2a2a+112a+1a+21331∣∣ ∣∣ By R1→R1−R2,R2→R2−R3
⇒=∣∣ ∣ ∣∣a2−12a−102(a−1)a−10331∣∣ ∣ ∣∣ Taking (a-1) common from R1 and R2 both
⇒=(a−1)2∣∣ ∣∣a+110210331∣∣ ∣∣ Expanding along C3
⇒△=(a−1)2{0−0+1+(a+1−2)}=(a−1)3=RHS.
OR Let A=(mnxy) Now ⎛⎜⎝2−110−34⎞⎟⎠A=⎛⎜⎝−1−81−2922⎞⎟⎠⇒⎛⎜⎝2−110−34⎞⎟⎠(mnxy)=⎛⎜⎝−1−81−2922⎞⎟⎠
⇒⎛⎜⎝2m−x2n−ymn−3m+4x−3n+4y⎞⎟⎠=⎛⎜⎝−1−81−2922⎞⎟⎠
By def.of equality of matrices,we get:
2m−x=−1,2n−y=−8,m=1,n=−2,−3m+4x=9,−3n+4y=22
So,clearly m=1,n=−2,x=3,y=4. Hence A(1−234)