Using properties of determinants, prove that ∣∣ ∣ ∣∣a32ab32bc32c∣∣ ∣ ∣∣=2(a−b)(b−c)(c−a)(a+b+c).
LHS : Let Δ=∣∣ ∣ ∣∣a32ab32bc32c∣∣ ∣ ∣∣ By R1→R1−R2,R2→R2−R3
⇒Δ=∣∣ ∣ ∣∣a3−b30a−bb3−c30b−cc32c∣∣ ∣ ∣∣ Taking (a-b) & (b-c) common from R1 and R2 respectively
⇒Δ=(a−b)(b−c)∣∣ ∣ ∣∣a2+ab+b201b2+bc+c201c32c∣∣ ∣ ∣∣ By R1→R1−R2
⇒Δ=(a−b)(b−c)(c−a)∣∣ ∣ ∣∣−a−b−c00b2+bc+c201c32c∣∣ ∣ ∣∣
Expanding along R1
⇒Δ=(a−b)(b−c)(c−a){(−a−b−c)[0−2]−0+0}
∴Δ =2(a-b)(b-c)(c-a)(a+b+c)= RHS.