wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinants, prove that :
∣ ∣abcc+ba+cbcaabb+ac∣ ∣=(a+b+c)(a2+b2+c2)

Open in App
Solution

Wehavetoprovethat∣ ∣abcc+ba+cbcaabb+ac∣ ∣=(a+b+c)(a2+b2+c2)Now,Δ=1a∣ ∣ ∣a2bcc+ba2+acbcaa2abb+ac∣ ∣ ∣[multiplyingfirstcolumnbya]Δ=(a2+b2+c2)a∣ ∣1bcc+b1bca1b+ac∣ ∣[C1C1+bC2+cC2]R2R2R1R3R3R1Δ=(a2+b2+c2)a∣ ∣1bcc+b0bab0a+cb∣ ∣=(a2+b2+c2)a(bc+a2+ac+ba+bc)=(a2+b2+c2)(a+b+c)proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon