Wehavetoprovethat∣∣
∣∣ab−cc+ba+cbc−aa−bb+ac∣∣
∣∣=(a+b+c)(a2+b2+c2)Now,Δ=1a∣∣
∣
∣∣a2b−cc+ba2+acbc−aa2−abb+ac∣∣
∣
∣∣[multiplyingfirstcolumnbya]Δ=(a2+b2+c2)a∣∣
∣∣1b−cc+b1bc−a1b+ac∣∣
∣∣[C1→C1+bC2+cC2]R2→R2−R1R3→R3−R1Δ=(a2+b2+c2)a∣∣
∣∣1b−cc+b0b−a−b0a+c−b∣∣
∣∣=(a2+b2+c2)a(−bc+a2+ac+ba+bc)=(a2+b2+c2)(a+b+c)proved.