1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Complex Numbers
Using propert...
Question
Using properties of determinants, prove that:
∣
∣ ∣ ∣
∣
α
α
2
β
+
γ
β
β
2
γ
+
α
γ
γ
2
α
+
β
∣
∣ ∣ ∣
∣
=
(
α
−
β
)
(
β
−
γ
)
(
γ
−
α
)
(
α
+
β
+
γ
)
Open in App
Solution
Consider,
∣
∣ ∣ ∣
∣
α
α
2
β
+
γ
β
β
2
γ
+
α
γ
γ
2
α
+
β
∣
∣ ∣ ∣
∣
C
3
→
C
1
+
C
3
∣
∣ ∣ ∣
∣
α
α
2
α
+
β
+
γ
β
β
2
α
+
β
+
γ
γ
γ
2
α
+
β
+
γ
∣
∣ ∣ ∣
∣
Taking
α
+
β
+
γ
common from
C
3
=
(
α
+
β
+
γ
)
∣
∣ ∣ ∣
∣
α
α
2
1
β
β
2
1
γ
γ
2
1
∣
∣ ∣ ∣
∣
R
1
→
R
1
−
R
2
,
R
2
→
R
2
−
R
3
=
(
α
+
β
+
γ
)
∣
∣ ∣ ∣
∣
α
−
β
α
2
−
β
2
0
β
−
γ
β
2
−
γ
2
0
γ
γ
2
1
∣
∣ ∣ ∣
∣
Taking
α
−
β
common from
R
1
and
β
−
γ
from
R
2
=
(
α
+
β
+
γ
)
(
α
−
β
)
(
β
−
γ
)
∣
∣ ∣ ∣
∣
1
α
+
β
0
1
β
+
γ
0
γ
γ
2
1
∣
∣ ∣ ∣
∣
Expanding along the third column, we get
=
(
α
+
β
+
γ
)
(
α
−
β
)
(
β
−
γ
)
[
1
(
β
+
γ
−
α
−
β
)
]
=
(
α
+
β
+
γ
)
(
α
−
β
)
(
β
−
γ
)
(
γ
−
α
)
Suggest Corrections
2
Similar questions
Q.
Using properties of determinants, prove that: