1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Determinants
Using propert...
Question
Using properties of determinants, prove that
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
q
+
r
r
+
p
p
+
q
y
+
z
z
+
x
x
+
y
∣
∣ ∣
∣
=
2
∣
∣ ∣
∣
a
b
c
p
q
r
x
y
z
∣
∣ ∣
∣
.
Open in App
Solution
Let
C
1
,
C
2
,
C
3
be first,second and third columns respectively
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
q
+
r
r
+
p
p
+
q
y
+
z
z
+
x
x
+
y
∣
∣ ∣
∣
Applying
C
1
=
C
1
+
C
2
+
C
3
,
we get,
=
2
∣
∣ ∣
∣
a
+
b
+
c
c
+
a
a
+
b
p
+
q
+
r
r
+
p
p
+
q
x
+
y
+
z
z
+
x
x
+
y
∣
∣ ∣
∣
Applying
C
2
=
C
2
−
C
1
and
C
3
=
C
3
−
C
1
,
we get,
=
2
∣
∣ ∣
∣
a
+
b
+
c
b
c
p
+
q
+
r
q
r
x
+
y
+
z
y
z
∣
∣ ∣
∣
Finally, Applying
C
1
=
C
1
−
(
C
2
+
C
3
)
,
we get,
=
2
∣
∣ ∣
∣
a
b
c
p
q
r
x
y
z
∣
∣ ∣
∣
Hence, proved!
Suggest Corrections
0
Similar questions
Q.
Prove the following identities:
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
q
+
r
r
+
p
p
+
q
y
+
z
z
+
x
x
+
y
∣
∣ ∣
∣
=
2
∣
∣ ∣
∣
a
b
c
p
q
r
x
y
z
∣
∣ ∣
∣
.
Q.
The
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
q
+
r
r
+
p
p
+
q
y
+
z
z
+
x
x
+
y
∣
∣ ∣
∣
can be simplified to
Q.
Using properties of determinants, prove that
ω
∣
∣ ∣ ∣
∣
x
y
z
x
2
y
2
z
2
y
+
z
z
+
x
x
+
y
∣
∣ ∣ ∣
∣
=
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
(
x
+
y
+
z
)
Q.
Using properties of determinants, prove that :
∣
∣ ∣
∣
a
b
−
c
c
+
b
a
+
c
b
c
−
a
a
−
b
b
+
a
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
)
Q.
Using the property of determinants and without expanding, prove that: