We have
L.H.S =∣∣
∣
∣∣(x+y)2zxzyzx(z+y)2xyzyxy(z+x)2∣∣
∣
∣∣
Operating R1→zR1,R2→xR2 and R3→yR3
=1xyz∣∣
∣
∣∣z(x+y)2z2xz2yzx2x(z+y)2x2yzy2xy2y(z+x)2∣∣
∣
∣∣
Taking z,x and y common form C1,C2 and C3 respectively.
=xyzxyz∣∣
∣
∣∣(x+y)2z2z2x2(z+y)2x2y2y2(z+x)2∣∣
∣
∣∣
Operating C1→C1−C3 and C2→C2−C3, we have
=∣∣
∣
∣∣(x+y)2−z20z20(z+y)2−x2x2y2−(z+x)2y2−(z+x)2(z+x)2∣∣
∣
∣∣
Taking (x+y+z) common form C1 and C2
=(x+y+z)2∣∣
∣
∣∣x+y−z0z20z+y−xx2y−z−xy−z−x(z+x)2∣∣
∣
∣∣
Operating R3→R3−R1−R2, we have
=(x+y+z)2∣∣
∣
∣∣x+y−z0z20z+y−xx2−2x−2z2zx∣∣
∣
∣∣
Applying, C1z and C2x, we have
=(x+y+z)2zx∣∣
∣
∣∣xz+yz−z20z20xz+xy−x2x2−2zx−2zx2zx∣∣
∣
∣∣
Adding C1→C1+C3 and C2→C2+C3, we have
=(x+y+z)2zx∣∣
∣
∣∣xz+yzz2z2x2xz+xyx2002zx∣∣
∣
∣∣
Expanding along R3, we have
=(x+y+z)2zx×2zx[(xz+yz)(xy+xz)−(x2z2)]
=2(x+y+z)2[x2yz+x2z2+xy2z+xyz2−x2z2]
=2(xyz)(x+y+z)2[x+y+z]
=2(xyz)(x+y+z)3=R.H.S.