LHS :
∣∣
∣
∣∣(x+y)2zxzyzx(z+y)2xyzyxy(z+x)2∣∣
∣
∣∣
Applying R1→zR1,R2→xR2,R3→yR3, we get,
=1xyz∣∣
∣
∣∣z(x+y)2z2xz2yzx2x(z+y)2x2yzy2xy2y(z+x)2∣∣
∣
∣∣
Applying C1→1zC1,C2→1xC2,C3→1yC3, we get,
=∣∣
∣
∣∣(x+y)2z2z2x2(z+y)2x2y2y2(z+x)2∣∣
∣
∣∣
Applying C1→C1−C3,C2→C2−C3, we get,
=(x+y+z)2∣∣
∣
∣∣x+y−z0z20z+y−xx2y−z−xy−z−x(z+x)2∣∣
∣
∣∣
Applying R3→R3−(R1+R2), we get,
=(x+y+z)2∣∣
∣
∣∣x+y−z0z20z+y−xx2−2x−2z2xz∣∣
∣
∣∣
Applying C1→C1+1zC3,C2→C2+1xC3, we get,
=(x+y+z)2∣∣
∣
∣
∣
∣∣x+yz2xz2x2zz+yx2002xz∣∣
∣
∣
∣
∣∣
=(x+y+z)2[2xz(xz+xy+yz+y2−xz)]
=(x+y+z)2[2xyz(x+y+z)]
=2xyz(x+y+z)3 = RHS