wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinants, prove that
∣ ∣ ∣(x+y)2zxzyzx(z+y)2xyzyxy(z+x)2∣ ∣ ∣=2xyz(x+y+z)3.

Open in App
Solution

LHS :
∣ ∣ ∣(x+y)2zxzyzx(z+y)2xyzyxy(z+x)2∣ ∣ ∣

Applying R1zR1,R2xR2,R3yR3, we get,
=1xyz∣ ∣ ∣z(x+y)2z2xz2yzx2x(z+y)2x2yzy2xy2y(z+x)2∣ ∣ ∣

Applying C11zC1,C21xC2,C31yC3, we get,

=∣ ∣ ∣(x+y)2z2z2x2(z+y)2x2y2y2(z+x)2∣ ∣ ∣

Applying C1C1C3,C2C2C3, we get,
=(x+y+z)2∣ ∣ ∣x+yz0z20z+yxx2yzxyzx(z+x)2∣ ∣ ∣

Applying R3R3(R1+R2), we get,
=(x+y+z)2∣ ∣ ∣x+yz0z20z+yxx22x2z2xz∣ ∣ ∣

Applying C1C1+1zC3,C2C2+1xC3, we get,

=(x+y+z)2∣ ∣ ∣ ∣ ∣x+yz2xz2x2zz+yx2002xz∣ ∣ ∣ ∣ ∣

=(x+y+z)2[2xz(xz+xy+yz+y2xz)]
=(x+y+z)2[2xyz(x+y+z)]
=2xyz(x+y+z)3 = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon