Let Δ=ω∣∣
∣
∣∣xyzx2y2z2y+zx+zx+y∣∣
∣
∣∣
Applying R3→R3+R1, we get
Δ=ω∣∣
∣
∣∣xyzx2y2z2x+y+zx+y+zx+y+z∣∣
∣
∣∣
=(x+y+z)ω∣∣
∣
∣∣xyzx2y2z2111∣∣
∣
∣∣
Applying C1→C1−C2 and C2→C2−C3, we get
Δ=(x+y+z)ω∣∣
∣
∣∣x−yy−zzx2−y2y2−z2z2001∣∣
∣
∣∣
=(x+y+z)(x−y)(y−z)ω∣∣
∣∣11zx+yy+zz2001∣∣
∣∣
Expanding along R3, we get
=(x+y+z)(x−y)(y−z)(y+z−x−y)
=(x−y)(y−z)(z−x)(x+y+z)