1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Determinant
Using propert...
Question
Using properties of determinants prove the following:
∣
∣ ∣
∣
1
1
1
a
b
c
a
3
b
3
c
3
∣
∣ ∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Open in App
Solution
∣
∣ ∣ ∣
∣
1
1
1
a
b
c
a
3
b
3
c
3
∣
∣ ∣ ∣
∣
C
1
→
C
1
−
C
2
∣
∣ ∣ ∣
∣
0
1
1
a
−
b
b
c
a
3
−
b
3
b
3
c
3
∣
∣ ∣ ∣
∣
C
2
→
C
2
−
C
3
a
−
b
∣
∣ ∣ ∣
∣
0
0
1
1
b
−
c
c
a
2
+
a
b
+
b
2
b
3
−
c
3
c
3
∣
∣ ∣ ∣
∣
(
a
−
b
)
(
b
−
c
)
∣
∣ ∣ ∣
∣
0
0
1
1
1
c
a
2
+
a
b
+
b
2
b
2
+
b
c
+
c
2
c
3
∣
∣ ∣ ∣
∣
(
a
−
b
)
(
b
−
c
)
(
b
2
+
b
c
+
c
2
−
a
2
−
a
b
−
b
2
)
(
a
−
b
)
(
b
−
c
)
(
b
(
c
−
a
)
+
(
c
−
a
)
(
c
+
a
)
)
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Suggest Corrections
0
Similar questions
Q.
Using properties of determinants, prove the following:
∣
∣ ∣
∣
1
1
1
a
b
c
a
3
b
3
c
3
∣
∣ ∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Q.
Using the properties of determinants, show that:
(i)
∣
∣ ∣ ∣
∣
1
a
a
2
1
b
b
2
1
c
c
2
∣
∣ ∣ ∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(ii)
∣
∣ ∣ ∣
∣
1
1
1
a
b
c
a
3
b
3
c
3
∣
∣ ∣ ∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Q.
Using properties of determinants, prove the following:
∣
∣ ∣
∣
a
b
c
a
−
b
b
−
c
c
−
a
b
+
c
c
+
a
a
+
b
∣
∣ ∣
∣
=
a
3
+
b
3
+
c
3
−
3
a
b
c
Q.
Using the property of determinants and without expanding, prove that: