LHS =∣∣
∣∣111abca3b3c3∣∣
∣∣
Applying C2→C2−C1,C3→C3−C1, we get
=∣∣
∣∣100ab−ac−aa3b3−a3c3−a3∣∣
∣∣
Taking out (b - a), (c - a) common from C2 and C3 respectively, we get
=(b−a)(c−a)∣∣
∣∣100a11a3b2+ab+a2c2+ac+a2∣∣
∣∣
Expanding along R1, we get
=−(a−b)(c−a)[1(c2+ac+a2−b2−ab−a2)0+0]
= −(a−b)(c−a)(c2+ac−b2−ab)
=−(a−b)(c−a)[−(b2−c2)−a(b−c)]
=−(a−b)(c−a)[(b−c)(−b−c−a)]
=(a−b)(b−c)(c−a)(a+b+c)]