First take LHS:
C1→C1+C2+C3
=∣∣
∣
∣∣1+x+x2xx21+x+x21x1+x+x2x21∣∣
∣
∣∣
Take out (1+x+x2) from C1
=(1+x+x2)∣∣
∣
∣∣1xx211x1x21∣∣
∣
∣∣
New R2→R2−R1:R3→R3−R1
=(1+x+x2)∣∣
∣
∣∣1xx201−xx(1−x)0x(x−1)1−x2∣∣
∣
∣∣
Expand with C1
=(1+x+x2)∣∣∣1−xx(1−x)−x(1−x)1−x2∣∣∣
Take out 1 - x from C1 and same from C2
=(1+x+x2)(1−x)2∣∣∣1x−x1+x∣∣∣
=(1+x+x2)(1−x)2(1+x+x2)
=(1+x+x2)(1−x)2
=(1−x3)2 = RHS
Hence proved.