∣∣
∣
∣∣1xx2x21xxx21∣∣
∣
∣∣
R1⟶R1−R2,R2⟶R2−R3
=∣∣
∣
∣∣1−x2x−1x2−xx2−x1−x2x−1xx21∣∣
∣
∣∣
=∣∣
∣
∣∣(1−x)(1+x)−(1−x)−x(1−x)−x(1−x)(1−x)(1+x)−(1−x)xx21∣∣
∣
∣∣
=(1−x)(1−x)∣∣
∣∣1+x−1−x−x1+x−1xx21∣∣
∣∣
C1⟶C1+C2+C3
=(1−x)2∣∣
∣∣0−1−x01+x−11+x+x2x21∣∣
∣∣
=(1−x)2(1+x+x2)[1+x(1+x)]
=(1−x)2(1+x+x2)(1+x+x2)
=[(1−x)(1+x+x2)]2
=(1−x3)2 [∵(1−x3)=(1−x)(1+x+x2)]
hence proved.