wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinants prove the following:
∣ ∣ ∣1xx2x21xxx21∣ ∣ ∣=(1x3)2

Open in App
Solution

∣ ∣ ∣1xx2x21xxx21∣ ∣ ∣
R1R1R2,R2R2R3
=∣ ∣ ∣1x2x1x2xx2x1x2x1xx21∣ ∣ ∣
=∣ ∣ ∣(1x)(1+x)(1x)x(1x)x(1x)(1x)(1+x)(1x)xx21∣ ∣ ∣
=(1x)(1x)∣ ∣1+x1xx1+x1xx21∣ ∣
C1C1+C2+C3
=(1x)2∣ ∣01x01+x11+x+x2x21∣ ∣
=(1x)2(1+x+x2)[1+x(1+x)]
=(1x)2(1+x+x2)(1+x+x2)
=[(1x)(1+x+x2)]2
=(1x3)2 [(1x3)=(1x)(1+x+x2)]
hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon