wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinants prove the following questions.

∣ ∣3aa+ba+cb+a3bb+cc+ac+b3c∣ ∣=3(a+b+c)(ab+bc+ca).

Open in App
Solution

Let A=∣ ∣3aa+ba+cb+a3bb+cc+ac+b3c∣ ∣=∣ ∣a+b+ca+ba+ca+b+c3bb+ca+b+cc+b3c∣ ∣
(using C1C1+C2+C3)
=(a+b+c)∣ ∣1a+ba+c13bb+c1c+b3c∣ ∣
(Taking out (a+b+c) common from C1)
=(a+b+c)∣ ∣1a+ba+c02b+aab0ac2c+a∣ ∣
(using R2R2R1 and R3R3R1)
Expanding along C1, we get
=(a+b+c)[(2b+a)(2c+a)(ab)(ac)]=(a+b+c)[4bc+2ab+2ac+a2a2+ac+babc]=(a+b+c)(3ab+3bc+3ac)=3(a+b+c)(ab+bc+ca)=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon