Using properties of determinants prove the following questions.
∣∣ ∣∣3a−a+b−a+c−b+a3b−b+c−c+a−c+b3c∣∣ ∣∣=3(a+b+c)(ab+bc+ca).
Let A=∣∣
∣∣3a−a+b−a+c−b+a3b−b+c−c+a−c+b3c∣∣
∣∣=∣∣
∣∣a+b+c−a+b−a+ca+b+c3b−b+ca+b+c−c+b3c∣∣
∣∣
(using C1→C1+C2+C3)
=(a+b+c)∣∣
∣∣1−a+b−a+c13b−b+c1−c+b3c∣∣
∣∣
(Taking out (a+b+c) common from C1)
=(a+b+c)∣∣
∣∣1−a+b−a+c02b+aa−b0a−c2c+a∣∣
∣∣
(using R2→R2−R1 and R3→R3−R1)
Expanding along C1, we get
=(a+b+c)[(2b+a)(2c+a)−(a−b)(a−c)]=(a+b+c)[4bc+2ab+2ac+a2−a2+ac+ba−bc]=(a+b+c)(3ab+3bc+3ac)=3(a+b+c)(ab+bc+ca)=RHS