Using properties of determinants prove the following questions.
∣∣ ∣ ∣∣αα2β+γββ2γ+αγγ2α+β∣∣ ∣ ∣∣=(β−γ)(γ−α)(α−β)(α+β+γ)
Firstly operate C3→C3+C1 and take common (α+β+γ) from C3 and then easy to expand the determinant.
Let A=∣∣
∣
∣∣αα2β+γββ2γ+αγγ2α+β∣∣
∣
∣∣=∣∣
∣
∣∣αα2α+β+γββ2α+γ+βγγ2α+β+γ∣∣
∣
∣∣
(using C3→C3+C1)
=(α+β+γ)∣∣
∣
∣∣αα21ββ1γγ21∣∣
∣
∣∣
(Taking out (α+β+γ) common from C1)
=(α+β+γ)∣∣
∣
∣∣αα21β−αβ2−α20γ−αγ2−α20∣∣
∣
∣∣
(using R2→R2−R1andR3→R3−R1)
Expanding along C3, we get
=(α+β+γ)[(β−α)(γ2−α2)−(γ−α)(β2−α2)]=(α+β+γ)[(β−α)(γ−α)(γ+α)−(γ−α)(β−α)(β+α)]=(α+β+γ)[(β−α)(γ−α)[γ+α−β−α]]=(α+β+γ)(α−β)(β−γ)(γ−α)
Hence proved