wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinants prove the following questions.

∣ ∣ ∣sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)∣ ∣ ∣=0

Open in App
Solution

Let A=∣ ∣ ∣sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)∣ ∣ ∣
=∣ ∣sinαcosαcosα cos δsinα sinβsinβcosβcpsβ cos δsinβ sinδsinγcosγcosγ cos δsinγ sinδ∣ ∣
[cos(A+B)=coa Acos Bsin A sin B]
∣ ∣sinαcosαcosα cos δsinβcosβcosβ cos δsinγcosγcosγ cos δ∣ ∣+∣ ∣sinαcosαsinα sinδsinβcosβsinβ sinδsinγcosγsinδ∣ ∣
Taking common cosδ from C3 in first determinant and taking common sinδ form C3 in second deteminant
=cosδ∣ ∣sinαcosαcosαsinβcosβcosβsinγcosγcosγ∣ ∣sinδ∣ ∣sinαcosαsinαsinβcosβsinβsinγcosγsinγ∣ ∣
=cosδ.0sinδ.0=0
[Since, C2 and C3 in first determinant C2 and C3 in second determinant are identical so values determinants are zero.]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon