Using properties of determinants prove the following questions.
∣∣ ∣ ∣∣sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)∣∣ ∣ ∣∣=0
Let A=∣∣
∣
∣∣sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)∣∣
∣
∣∣
=∣∣
∣∣sinαcosαcosα cos δ−sinα sinβsinβcosβcpsβ cos δ−sinβ sinδsinγcosγcosγ cos δ−sinγ sinδ∣∣
∣∣
[∵cos(A+B)=coa Acos B−sin A sin B]
∣∣
∣∣sinαcosαcosα cos δsinβcosβcosβ cos δsinγcosγcosγ cos δ∣∣
∣∣+∣∣
∣∣sinαcosα−sinα sinδsinβcosβ−sinβ sinδsinγcosγsinδ∣∣
∣∣
Taking common cosδ from C3 in first determinant and taking common −sinδ form C3 in second deteminant
=cosδ∣∣
∣∣sinαcosαcosαsinβcosβcosβsinγcosγcosγ∣∣
∣∣−sinδ∣∣
∣∣sinαcosαsinαsinβcosβsinβsinγcosγsinγ∣∣
∣∣
=cosδ.0−sinδ.0=0
[Since, C2 and C3 in first determinant C2 and C3 in second determinant are identical so values determinants are zero.]