Using properties of determinants prove the following questions.
∣∣ ∣ ∣∣xx21+px3yy21+py3zz21+pz3∣∣ ∣ ∣∣=(1+pxyz)(x−y)(y−z)(z−x), where p is any scalar.
LHS=∣∣
∣
∣∣xx21+px3yy21+py3zz21+pz3∣∣
∣
∣∣=∣∣
∣
∣∣xx21yy21zz21∣∣
∣
∣∣+∣∣
∣
∣∣xx2px3yy2py3zz2pz3∣∣
∣
∣∣
In the first determinant, interchange C1 and C3,C2 and C3 and in the second determinant take out p from C3. we get
=(−1)2∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣+p∣∣
∣
∣∣xx2x3yy2y3zz2z3∣∣
∣
∣∣=∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣+pxyz∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣
[Taking out x from R1, y from R2 and z from R3 in the second determinant]
=(1+pxyz)∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣=1(1+pxyz)∣∣
∣
∣∣1xx20y−xy2−x20z−xz2−x2∣∣
∣
∣∣
(using R2→R2−R1andR3→R3−R1)
Expanding along C1, we get
=(1+pxyz)[(y−x)(z2−x2)−(z−x)(y2−x2)]=(1+pxyz)[(y−x)(z−x)(z+x)−(z−x)(y−x)(y+x)]=(1+pxyz)(y−x)(z−x)[(z+x)−(y+x)]=(1+pxyz)(y−x)(z−x)[(z+x−y−x)]=(1+pxyz)[(y−x)(z−x)(z−y)]=(1+pxyz)(x−y)(y−z)(z−x)