wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determinants, show that triangle ABC is isosceles, if : ∣ ∣1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2B+cosC∣ ∣=0

Open in App
Solution

∣ ∣1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2B+cosC∣ ∣=0

C2C2C3,C3C3C2

∣ ∣1001+cosAcosBcosCcosCcosBcos2A+cosAcosBcosCcosCcosB∣ ∣=0

1[(cosBcosC)(cosCcosB)(cosBcosC)(cosCcosB)]=0

cosBcosC=0cosB=cosCB=C

B=C

Therefore triangle is isoceles.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon