wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

Using properties of determination, prove that ∣ ∣ ∣a2+1abacabb2+1bccacbc2+1∣ ∣ ∣=1+a2+b2+c2

Open in App
Solution

∣ ∣ ∣a2+1abacabb2+1bccacbc2+1∣ ∣ ∣
a2+1(b2+1×c2+1bc×cb)ab(ab×c2+1bc×ca)+ac(ab×cbb2+1×ca)
a2+1(b2/c2+b2+c2+1b2/c2)ab(abc2+ababc2)+ac(ab2cab2c+ca)
=a2+1(b2+c2+1)ab(ab)+ac(ca)
=a2b2a2c2+a2+b2+c2+1a2b2+a2c2
=1+a2+b2+c2.

1178525_1280365_ans_fd5303447c2d4baca0c04edecfad10aa.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Infinite Terms of a GP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon