Using properties of proportion, solve each of the following for x:
(i) 1+x+1-x1+x-1-x=ab.
Calculate the value of x:
If ab=cd, then the property of componendo and dividendo states that a+ba-b=c+dc-d.
The given proportion can be simplified as,
1+x+1-x+1+x-1-x1+x+1-x-(1+x-1-x)=a+ba-b(bycomponendoanddividendo)⇒21+x21-x=a+ba-b⇒1+x1-x=a+ba-b⇒1+x1-x=(a+b)2(a-b)2(Squaringbothsides)⇒1+x+1-x1+x-1+x=(a+b)2+(a-b)2(a+b)2-(a-b)2(bycomponendoanddividendo)⇒22x=2(a2+b2)4ab(Usingtheformulae(a-b)2=a2-2ab+b2and(a+b)2=a2+2ab+b2)⇒1x=(a2+b2)2ab⇒x=2ab(a2+b2)(Takingthereciprocal)
Final Answer: The value of x=2aba2+b2.
Using the properties of proportion, solve the following equation for x.
x3+3x3x2+1=34191
Using property of proportion solve for X
(1+x+x^2)/(1-x+x^2)= 49(1+X)/63(1-x)
(iv) 12x+1+2x-312x+1-2x-3=32.
(iii) 16(a-x)3(a+x)3=a+xa-x.