(i)
From the distributive property:
A∪( B∩C )=( A∪B )∩( A∪C )
A∪( A∩B )=( A∪A )∩( A∪B ) =A∩( A∪B ) =A
Hence,
A∪( A∩B )=A
(ii)
A∩( B∪C )=( A∩B )∪( A∩C )
A∩( A∪B )=( A∩A )∪( A∩B ) =A∪( A∩B )
From part (i),
A∩( A∪B )=A
Using properties of sets, show that
(i) A∪(A∩B)=A (ii) A∩(A∪B)=A.