Using quadratic formula, find the value of x. p2x2+(p2−q2)x−q2=0,p≠0
Now finding roots,
x=−b±√b2−4ac2a ⇒x=−(p2−q2)±√(p2+q2)22p2
⇒x=−(p2−q2)+(p2+q2)2p2 or x=−(p2−q2)−(p2+q2)2p2
⇒x=q2p2 or x=−1
Using quadratic formula solve the following quadratic equation: p2x2+(p2−q2)x−q2=0,p≠0