The correct option is D The roots are : n2m2,−1
Given equation is: m2x2+(m2−n2)x−n2=0, m≠0
Comparing this equation with ax2+bx+c=0, we have
a=m2,b=m2−n2 and c=−n2
∴Discriminant,D=b2−4ac =(m2−n2)2−4×m2×−n2
=(m2−n2)2+4m2n2
=(m2+n2)2
⇒D>0
So, the given equation has real roots and given by,
α=−b+√D2a=−(m2−n2)+(m2+n2)2m2=n2m2
and, β=−b−√D2a=−(m2−n2)−(m2+n2)2m2=−1
∴The roots are n2m2,−1.