Using the identity sin2A+cos2A=1,prove that 1+sinθcosθ+cosθ1+sinθ=2secθ.
Simplying the expression:
1+sinθcosθ+cosθ1+sinθ=2secθ
Now, L.H.S.=1+sinθcosθ+cosθ1+sinθ
=1+sinθ2+cos2θcosθ1+sinθ
=1+2sinθ+sin2θ+cos2θcosθ1+sinθ ∵(a+b)2=a2+b2+2ab
=1+2sinθ+1cosθ1+sinθ ∵sin2A+cos2A=1
=21+sinθcosθ1+sinθ
=2cosθ
=2secθ
=R.H.S.
Hence, it is proved that1+sinθcosθ+cosθ1+sinθ=2secθ.
prove that tan theta/(1 - cos theta) + tan theta/(1+ cos theta) = 2sec theta .cosec theta
Prove the identity
cosecθ-1cosecθ+1+cosecθ+1cosecθ-1=2secθ
Prove that cosθ(1+sinθ)+(1+sinθ)cosθ=2secθ