wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using the identity sin2A+cos2A=1,prove that 1+sinθcosθ+cosθ1+sinθ=2secθ.


Open in App
Solution

Simplying the expression:

1+sinθcosθ+cosθ1+sinθ=2secθ

Now, L.H.S.=1+sinθcosθ+cosθ1+sinθ

=1+sinθ2+cos2θcosθ1+sinθ

=1+2sinθ+sin2θ+cos2θcosθ1+sinθ (a+b)2=a2+b2+2ab

=1+2sinθ+1cosθ1+sinθ sin2A+cos2A=1

=21+sinθcosθ1+sinθ

=2cosθ

=2secθ

=R.H.S.

Hence, it is proved that1+sinθcosθ+cosθ1+sinθ=2secθ.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon