Using the method of integration, find the area of the region bounded by lines
2x + y = 4, 3x - 2y = 6 and x - 3y + 5 = 0
The given lines are 2x + y = 4 ...(i)
3y - 2y = 6 ...(ii)
x - 3y + 5 = 0 ...(iii)
From Eqs. (i) and (ii), we get
4−2x=3x−62 (Eliminating y)
⇒8−4x=3x−6⇒7x=14⇒x=2
Using Eq. (i), we get y=4−2x=4−2×2=0
∴ Eq. (i) and (ii) intersect at the point (2, 0).
From Eqs. (ii) and (iii), we get
3x−62=x÷53
⇒9x−18=2x+10⇒7x=28⇒x=4
Using Eq. (ii), we get y=3×4−62=3
∴ Eq. (i) and (iii) intersect at the point (4, 3).
From lines Eqs. (i) and (iii), we get
4−2x=x+53⇒7x=7⇒x=1
Using Eq.(i), we get y=4=2x=4−2×1=2
Eqs. (i) and (iii) intersect at the point (1, 2)
∴ Required area = (Area under line segment BA) - (Area under line segment BC) - (Area under line segment AC)
=∫41(x+53)dx−∫21(4−2x)dx−∫42(3x−62)dx=13[(x+5)22]41−[4x−x2]21−12[3x22−6x]42=16[92−62]−{(8−4)−(4−1)}−12[(3×422−6×4)−(3×222−6×2)]=456−1−12(0−6+12)=152−1−3=72 sq unit