Given lines are
5x−2y−10=0 --- (1)
x+y−9=0--- (2)
2x−5y−4=0 ---- (3)
For intersecting point of (1) and (2)
(1) + (2)X (2)
⇒5x−2y−10+2x+2y−18=0⇒7x−28=0⇒x=4Putting x = 4in (1), we get
20−2y−10=0y=5Intersecting point of (1) and (2) is (4, 5)
For intersecting point of (1) and (3)
(1)×5−(3)×2⇒25x−10y−50−4x+10y+8=0⇒21x−42=0⇒x=2Putting x= 2 in (1), we get
10x−2y−10=0y=0Intersecting point of (1) and (3) is (2, 0)
For intersecting point of (2)and (3)
2×(2)×(3)⇒2x+2y−18−2x+5y+4=0⇒7y−14=0⇒y=2Putting y = 2 in (2), we get
x +2 -9 = 0
x = 7
Intersecting point (2) and (3) is (7, 2)
Shaded region is required region
∴ Required area =
∫42(5x−102)dx+∫74(−x+9)dx−∫722x−45dx=52∫42xdx−5∫42dx−∫74xdx+9∫74dx−25∫72xdx+45∫72dx=52[x22]42−5[x]42−[x22]74+9[x]74−25[x22]72+45[x]72=54(16−4)−5(4−2)−12(49−16)+9(7−4)−15(49−4)+45(7−2)=15−10−332+27−9+4=27−332=54−332=212 sq.unit
Therefore the area is
212 sq.units.