Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B(4, 5) and C(6, 3).
The given points are A (2, 0), B(4, 5) and C(6, 3) Equation of line AB is
y−0=5−04−2(X−2) [Using y−y1=y2−y1x2−x1(x−x1)]
⇒y=52x−5
Equation of line BC is
y−0=3−06−2(x−2)⇒y=34x−32
Required area = (Area under line segment AB) + (Area under line
segment BC) - (Area under line segment AC)
=∫45(52x−5)dx+∫64(−x+9)dx−∫62(34x−32)dx=[5x24−5x]42+[−x22+9x]64−[3x28−32x]62=(5×424−5×4)−(5×224−5×2)+(−622+9×6)−(−422+9×4)−(3×628−32×6)+(3×228−32×2)=(20−20)−(5−10)+(−18+54)−(−8+36)−(272−9)+(32−3)=536−28−92−32=7 sq unit