4
You visited us
4
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Area between Two Curves
Using the met...
Question
Using the method of integration find the area of the triangle
A
B
C
, coordinates of whose vertices are
A
(
2
,
0
)
,
B
(
4
,
5
)
and
C
(
6
,
3
)
Open in App
Solution
The vertices of
Δ
A
B
C
are
A
(
2
,
0
)
,
B
(
4
,
5
)
, and
C
(
6
,
3
)
.
Equation of line segment
A
B
is
y
−
0
=
5
−
0
4
−
2
(
x
−
2
)
2
y
=
5
x
−
10
y
=
5
2
(
x
−
2
)
.
.
.
.
.
.
.
.
.
.
(
1
)
Equation of line segment
B
C
is
y
−
5
=
3
−
5
6
−
4
(
x
−
4
)
2
y
−
10
=
−
2
x
+
8
2
y
=
−
2
x
+
18
y
=
−
x
+
9
.
.
.
.
.
.
.
.
.
(
2
)
Equation of line segment
C
A
is
y
−
3
=
0
−
3
2
−
6
(
x
−
6
)
−
4
y
+
12
=
−
3
x
+
18
4
y
=
3
x
−
6
y
=
3
4
(
x
−
2
)
.
.
.
.
.
.
.
.
.
.
.
(
3
)
∴
A
r
e
a
(
Δ
A
B
C
)
=
A
r
e
a
(
A
B
L
A
)
+
A
r
e
a
(
B
L
M
C
B
)
−
A
r
e
a
(
A
C
M
A
)
=
∫
4
2
5
2
(
x
−
2
)
d
x
+
∫
6
4
(
−
x
+
9
)
d
x
−
∫
6
2
3
4
(
x
−
2
)
d
x
=
5
2
[
x
2
2
−
2
x
]
4
2
+
[
−
x
2
2
+
9
x
]
6
4
−
3
4
[
x
2
2
−
2
x
]
6
2
=
5
2
[
8
−
8
−
2
+
4
]
+
[
−
18
+
54
+
8
−
36
]
−
3
4
[
18
−
12
−
2
+
4
]
=
5
+
8
−
3
4
(
8
)
=
13
−
6
=
7
sq. units
Suggest Corrections
0
Similar questions
Q.
Using the method of integration, find the area of the triangle
A
B
C
, coordinates of whose vertices are
A
(
4
,
1
)
,
B
(
6
,
6
)
and
C
(
8
,
4
)
.
Q.
Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).