p (1) ∫π/20 cos x sin x dx
=12[sin2x]π/20=12=121+1[21]
Assume p (m) to hold good.
p(m + 1) = ∫π/20 cosm+1 x sin (m + 1) x dx
= ∫π/20 cosm x[sin (m + 1) x cos x] dx
= ∫π/20 cosm x[cos(m + 1) x sin x + sin mx]
Using the formula of sin (A - B)
i.e., sin mx = sin [(m + 1)x - x]
= sin (m + 1) x cos x - cos (m + 1) x sin x....
therfore p (m + 1) = ∫π/20 (cosm x sin x )cos (m + 1) x + p (m), by
Integrating by parts.
=[cosm+1xm+1cos(m+1)x]+1m+1∫cosm+1x× -(m + 1) sin (m + 1) x + p (m)
p(m + 1) = 1m+1 - p(m + 1) + p(m)
2p (m + 1) = 1m+1+,12m+1[2++222+...+2mm]
=12m+1[2+222+...+2mm+2m+1m+1]
∴ p(m + 1) = 12m+2[2+222+...+2m+1m+]