2+4+6+....+2n=n2+nletn=1∴2×1=12+12=2(true)Letgivenequationbetrueforn=k∴2+4+6+....+2k=k2+k(1)Inductionstepletn=k+1∴2+4+6+...+2(k+1)=(k+1)2+(k+1)2+4+6+.....+2k+2=k2+1+2k+k+1=k2+k+2k+22(1+2+3+...+(k+1))=k2+3k+22[k+12(k+1+1)]⇒(k+1)(k+2)=k2+3k+2⇒k2+3k+2=k2+3k+2Henceproved