2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Statement
Using the pri...
Question
Using the principle of mathematical induction, prove the following for all
n
∈
N
:
1
2
+
3
2
+
5
2
+
7
2
+
.
.
.
.
+
(
2
n
−
1
)
2
=
n
(
2
n
−
1
)
(
2
n
+
1
)
3
Open in App
Solution
Let
P
(
k
)
be true for some
k
∈
N
i.e.,
P
(
k
)
:
1
2
+
3
2
+
5
2
+
.
.
.
.
+
(
2
k
−
1
)
2
=
k
(
2
k
−
1
)
(
2
k
+
1
)
3
.
Now,
{
1
2
+
3
2
+
5
2
+
.
.
.
+
(
2
k
−
1
)
2
}
+
{
2
(
k
+
1
)
−
1
}
2
=
k
(
2
k
−
1
)
(
2
k
+
1
)
3
+
(
2
k
+
1
)
2
=
1
3
.
{
k
(
2
k
−
1
)
(
2
k
+
1
)
+
3
(
2
k
+
1
)
2
}
=
1
3
(
2
k
+
1
)
{
k
(
2
k
−
1
)
+
3
(
2
k
+
1
)
}
=
1
3
(
2
k
+
1
)
(
2
k
2
+
5
k
+
3
)
=
1
3
(
k
+
1
)
(
2
k
+
1
)
(
2
k
+
3
)
.
Thus
P
(
k
+
1
)
is true whenever
P
(
k
)
is true.
Hence, by the principle of mathematical induction, statement
P
(
n
)
is true for all natural numbers i.e.,
n
.
Suggest Corrections
0
Similar questions
Q.
Prove the following by using the principle of mathematical induction for all
n
∈
N
:
1
2
+
3
2
+
5
2
+
.
.
.
.
.
.
.
+
(
2
n
−
1
)
2
=
n
(
2
n
−
1
)
(
2
n
+
1
)
3
Q.
Prove the following by using the principle of mathematical induction for all n ∈ N: