10
You visited us
10
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Statement
Using the pri...
Question
Using the principle of mathematical induction, prove the following for all
n
∈
N
:
1
2
+
3
2
+
5
2
+
7
2
+
.
.
.
.
+
(
2
n
−
1
)
2
=
n
(
2
n
−
1
)
(
2
n
+
1
)
3
Open in App
Solution
Let
P
(
k
)
be true for some
k
∈
N
i.e.,
P
(
k
)
:
1
2
+
3
2
+
5
2
+
.
.
.
.
+
(
2
k
−
1
)
2
=
k
(
2
k
−
1
)
(
2
k
+
1
)
3
.
Now,
{
1
2
+
3
2
+
5
2
+
.
.
.
+
(
2
k
−
1
)
2
}
+
{
2
(
k
+
1
)
−
1
}
2
=
k
(
2
k
−
1
)
(
2
k
+
1
)
3
+
(
2
k
+
1
)
2
=
1
3
.
{
k
(
2
k
−
1
)
(
2
k
+
1
)
+
3
(
2
k
+
1
)
2
}
=
1
3
(
2
k
+
1
)
{
k
(
2
k
−
1
)
+
3
(
2
k
+
1
)
}
=
1
3
(
2
k
+
1
)
(
2
k
2
+
5
k
+
3
)
=
1
3
(
k
+
1
)
(
2
k
+
1
)
(
2
k
+
3
)
.
Thus
P
(
k
+
1
)
is true whenever
P
(
k
)
is true.
Hence, by the principle of mathematical induction, statement
P
(
n
)
is true for all natural numbers i.e.,
n
.
Suggest Corrections
0
Similar questions
Q.
Prove the following by using the principle of mathematical induction for all
n
∈
N
:
1
2
+
3
2
+
5
2
+
.
.
.
.
.
.
.
+
(
2
n
−
1
)
2
=
n
(
2
n
−
1
)
(
2
n
+
1
)
3
Q.
Prove the following by using the principle of mathematical induction for all n ∈ N: