Given; P(n) is 2 + 4 + 6 + …+ 2n = n2 + n.
P(0) = 0 = 02 + 0 ; it’s true.
P(1) = 2 = 12 + 1 ; it’s true.
P(2) = 2 + 4 = 22 + 2 ; it’s true.
P(3) = 2 + 4 + 6 = 32 + 2 ; it’s true.
Let P(k) be 2 + 4 + 6 + …+ 2k = k2 + k is true;
⇒ P(k+1) is 2 + 4 + 6 + …+ 2k + 2(k+1) = k2 + k + 2k +2
= (k2 + 2k +1) + (k+1)
= (k+1)2+(k+1)
⇒ P(k+1) is true when P(k) is true.
∴ By Mathematical Induction 2+4+6+…+2n=n2+n is true for all natural numbers n.