Consider, ∣∣
∣
∣∣a2+1abacabb2+1bccacbc2+1∣∣
∣
∣∣
Taking a,b,c common from R1,R2,R3 respectively
=abc∣∣
∣
∣
∣
∣
∣∣a+1abcab+1bcabc+1c∣∣
∣
∣
∣
∣
∣∣
Multiplying C1,C2,C3 by a,b,c respectively
=abcabc∣∣
∣
∣∣a2+1b2c2a2b2+1c2a2b2c2+1∣∣
∣
∣∣
C1→C1+C2+C3
=∣∣
∣
∣∣1+a2+b2+c2b2c21+a2+b2+c2b2+1c21+a2+b2+c2b2c2+1∣∣
∣
∣∣
Taking (1+a2+b2+c2) common from C1
=(1+a2+b2+c2)∣∣
∣
∣∣1b2c21b2+1c21b2c2+1∣∣
∣
∣∣
R1→R1−R2,R2→R2−R3
=(1+a2+b2+c2)∣∣
∣
∣∣0−100b2−11b2c2+1∣∣
∣
∣∣
Expanding along first column,
=(1+a2+b2+c2)∣∣∣−10b2−1∣∣∣
=1+a2+b2+c2