Let Δ=∣∣
∣
∣∣xx2yzyy2zxzz2xy∣∣
∣
∣∣
Applying R1=R1−R2,&R2=R2−R3
Δ=∣∣
∣
∣∣x−yx2−y2z(y−x)y−zy2−z2x(z−y)zz2xy∣∣
∣
∣∣
Taking (x−y)&(y−z) common from first and second row respectively we get,
Δ=(x−y)(y−z)∣∣
∣
∣∣1x+y−z1y+z−xzz2xy∣∣
∣
∣∣
Now applying R1=R1−R2 we get,
Δ=(x−y)(y−z)∣∣
∣
∣∣0x−zx−z1y+z−xzz2xy∣∣
∣
∣∣
Taking (z−x) common from first row, we get,
Δ=(x−y)(y−z)(z−x)∣∣
∣
∣∣0−1−11y+z−xzz2xy∣∣
∣
∣∣
Expanding along R1 we get,
Δ=(x−y)(y−z)(z−x)[xy+xz−1(z2−yz−z2)]
∴Δ=(x−y)(y−z)(z−x)(xy+yz+zx)
Hence proved.