(i) ∣∣
∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣
∣∣
C1→C1−C2,C2→C2−C3
=∣∣
∣
∣∣−(a+b+c)02a(a+b+c)−(a+b+c)2b0(a+b+c)c−a−b∣∣
∣
∣∣
Taking a+b+c common from C1,C2
=(a+b+c)2∣∣
∣∣−102a1−12b01c−a−b∣∣
∣∣
R2→R2+R1
=(a+b+c)2∣∣
∣∣−102a0−12a+2b01c−a−b∣∣
∣∣
Expanding along first column,
=(a+b+c)2[−1(−c+a+b−2a−2b)]
=(a+b+c)3
(ii) ∣∣
∣∣x+y+2zxyzy+z+2xyzxz+x+2y∣∣
∣∣
R1→R1−R2,R2→R2−R3
=∣∣
∣
∣∣x+y+z−(x+y+z)00x+y+z−(x+y+z)zxz+x+2y∣∣
∣
∣∣
Taking (x+y+z) common from R1,R2
=(x+y+z)2∣∣
∣∣1−1001−1zxz+x+2y∣∣
∣∣
C2→C2+C3
=(x+y+z)2∣∣
∣∣10001−1zx+zz+x+2y∣∣
∣∣
Expanding along first row,
=(x+y+z)2∣∣∣1−1x+zx+z+2y∣∣∣
=(x+y+z)2(x+z+2y+x+z)
=2(x+y+z)3