Using the properties of determinants, solve the following for x:
∣∣ ∣∣x+2x+6x−1x+6x−1x+2x−1x+2x+6∣∣ ∣∣=0
Let Δ=∣∣
∣∣x+2x+6x−1x+6x−1x+2x−1x+2x+6∣∣
∣∣Applying C2→C2−C1 and C3→C3−C1
Δ=∣∣
∣∣x+24−3x+6−7−4x−137∣∣
∣∣Applying R2→R2−R1 and R3→R3−R1
Δ=∣∣
∣∣x+24−34−11−1−3−110∣∣
∣∣Applying R2→R2+R3
Δ=∣∣
∣∣x+24−31−129−3−110∣∣
∣∣
Applying R3→R3+(3)R2Δ=∣∣
∣∣x+24−31−1290−3737∣∣
∣∣
Expanding along C1Δ=(x+2)∣∣∣−129−3737∣∣∣−1∣∣∣4−3−3737∣∣∣
Δ=(x+2)(−444)+333−1(148−111)Δ=(x+2)(−111)−1(37)∴Δ=0=−111x−259∴x=259111=−73