Using the property of determinants and without expanding.
∣∣
∣
∣∣1bca(b+c)1cab(c+a)1abc(a+b)∣∣
∣
∣∣=0
Let A=∣∣ ∣ ∣∣1bca(b+c)1cab(c+a)1abc(a+b)∣∣ ∣ ∣∣=∣∣ ∣∣1bcab+ac+bc1cabc+ba+ca1abca+cb+ab∣∣ ∣∣ (using C3→C3+C2)
Taking ab+bc+ca common from C3, we get
=(ab+bc+ca)∣∣
∣∣1bc11ca11ab1∣∣
∣∣=(ab+bc+ca)×0=0
[Since, the two columns C1 and C3 are identical]