Using the property of determinants and without expanding.
∣∣
∣∣a−bb−cc−ab−cc−aa−bc−aa−bb−c∣∣
∣∣=0
Let A=∣∣
∣∣a−bb−cc−ab−cc−aa−bc−aa−bb−c∣∣
∣∣=0
Applying C1→C1+C2+C3, we get
=∣∣
∣∣a−b+b−c+c+c−ab−cc−ab−c+c−a+a−bc−aa−bc−a+a−b+b−ca−bb−c∣∣
∣∣=∣∣
∣∣0b−cc−a0c−aa−b0a−bb−c∣∣
∣∣=0
[Since, each element of C1 (first column ) is zero].
Alternate method
A=∣∣
∣∣a−bb−cc−ab−cc−aa−bc−aa−bb−c∣∣
∣∣ Applying R1→R1+R2, we get
=∣∣
∣∣a−cb−ac−bb−cc−aa−b−(a−c)−(b−a)−(c−b)∣∣
∣∣
Taking negative sign common from R3, we get
=−∣∣
∣∣a−cb−ac−bb−cc−aa−ba−cb−ac−b∣∣
∣∣=0 [Since, the two rows R1 and R3 are identical ].