wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using the relation A.MG.M, prove that
(i) (x2y+y2z+z2x)(xy2+yz2+zx2)9x2y2z2. (x,y,z are positive real numbers)
(ii) (a+b).(b+c).(c+a)>abc; if a,b,c are positive real numbers

Open in App
Solution

(i)(x2y+y2z+z2x)(xy2+yz2+zx2)9=x3y3+3x2y2z2+x4yz+y4xz+y3z3+z4yx+z3x39=A.M
9x3y3×(x2y2z2)3×x4yz×y4xz×z4yx×y3z3×z3x3=x2y2z2=G.M

As A.MG.M,
(x2y+y2z+z2x)(xy2+yz2+zx2)9x2y2z2
(x2y+y2z+z2x)(xy2+yz2+zx2)9x2y2z2

(ii)(a+b)(b+c)(c+a)8=(ab+ac+b2+bc)(c+a)8=2abc+ac2+b2c+bc2+a2b+a2c+b2a8=A.M
8(abc)2×ac2×a2c×b2c×bc2×a2b×ab2=abc=G.M

As A.MG.M,
(a+b)(b+c)(c+a)8abc
(a+b)(b+c)(c+a)8abc>abc

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cube Root of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon