Using the remainder theorem, find the remainder, when p(x) is divided by g(x), where (px)=x3−6x2+9x+3,g(x)=x−1
(px)=x3−6x2+9x+3g(x)=x−1Remainder=p(1)p(1)=(1)3−6(1)2+9(1)+3=1−6+9+3=7Remainder=7