wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Using vector, prove that sin(αβ)=sinαcosβcosαsinβ

Open in App
Solution

Let P(α) and Q(π2+β) are trigonometric points
P(α)=(cosα,sinα)
And Q(π2+β)=(cos(π2+β)),sin(π2+β)=(sinβ,cosβ)
OP=(cosα,sinα)
OQ=(sinβ,cosβ)
Angle between OP.OQ=π2+βα=π2(αβ)
cos[π2(αβ)]=OP.OQOPOQ
sin(αβ)=(cosα,sinα).(sinβ,cosβ)(cos2α+sin2β)sin2β+cos2β
sin(αβ)=cosαsinβ+sinαcosβ
sin(αβ)=sinαcosβcosαsinβ
884704_958702_ans_d2f5b14d96f048b28d5128622a20ef66.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems on Integration
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon