Using vector, prove that sin(α−β)=sinαcosβ−cosαsinβ
Open in App
Solution
Let P(α) and Q(π2+β) are trigonometric points ∴P(α)=(cosα,sinα) And Q(π2+β)=(cos(π2+β)),sin(π2+β)=(−sinβ,cosβ) →OP=(cosα,sinα) →OQ=(−sinβ,cosβ) Angle between →OP.→OQ=π2+β−α=π2−(α−β) ∴cos[π2−(α−β)]=→OP.→OQ∣∣→OP∣∣∣∣→OQ∣∣ ∴sin(α−β)=(cosα,sinα).(−sinβ,cosβ)(√cos2α+sin2β)√sin2β+cos2β ∴sin(α−β)=−cosαsinβ+sinαcosβ ∴sin(α−β)=sinαcosβ−cosαsinβ