Using vectors, find the area of the △ABC with vertices A(1, 2, 3), B (2, -1, 4) and C(4, 5, -1).
Here, −−→AB=(2−1)^i+(−1−2)^j+(4−3)^k =^i−3^j+^kand −−→AC=(4−1)^i+(5−2)^j+(−1−3)^k =3^i+3^j−4^k
∴ −−→AB×−−→AC=∣∣ ∣ ∣∣^i^j^k1−3133−4∣∣ ∣ ∣∣ =^i(12−3)−^j(−4−3)+^k(3+9) =9^i+7^j+12^kand |−−→AB×−−→AC|=√92+72+122 =√81+49+144 =√274∴ Area of △ABC=12|−−→AB×−−→AC| =12√274 sq units