We form the vectors →AB and →AC
→AB=2−1,−1−2,4−3⇒1,−3,1
→AC=4−1,5−2,−1−3⇒3,3,−4
We find their cross product →AB×→AC=∣∣
∣
∣∣→i→j→k1−3133−4∣∣
∣
∣∣
= →i(−4(−3)−3)−→j(−4−3)+→k(3+9)
= 9→i+7→j+12→k
So, the magnitude is {9, 7, 12}
=√92+72+122=√81+49+144=√274≈16.55
The triangle's area is 12 the area of that parallelogram.
So, Area of traingle = 12×16.55⇒16.552=8.275 Sq.units