Using vectors, find the value of k, such that the points (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.
Let the points are A(k, -10, 3) , B (1, -1, 3) and C (3, 5, 3 )
So, −−→AB=−−→OB−−−→OA =(^i−^j+3^k)−(k^i−10^j+3^k) =(1−k)^i+(−1+10)^j+(3−3)^k =(1−k)^k+9^j+0^k∴ |−−→AB|=√(1−k)2+(9)2+0=√(1−k)2+81Similarly, −−→BC=−−→OC−−−→OB =(3^i+5^j+3^k)−(k^k−10^j+3^k =2^(i)+6^j+0^k∴ |−−→BC|=√22+62+0=2√10and −−→AC=−−→OC−−−→OA =(3^i+5^j+3^k)−(k^i−10^j+3^k) =(3−k)^i+15^j+0^k∴ |−−→AC|=√(3−k)2+225
If A, B and C are collinear, then sum of modulus of any two vectors will be equal to the modulus of third vectors
For |−−→AB|+|−−→BC|=|−−→AC|,√(1−k)2+81+2√10=√(3−k)2+225⇒ √(3−k)2+225−√(1−k)2+81=2√10⇒ √9+k2−6k+225−√1+k2−2k+81=2√10⇒ √k2−6k+234−2√10=√k2−2k+82⇒ k2−6k+234+40−2√k2−6k+234.2√10=k2−2k+82⇒ k2−6k+234+40−k2+2k−82=4√10√k2+234−6k⇒ −4k+192=4√10√k2+234−6k⇒ −k+48=√10√k2+234−6k
On squaring both sides, we get
48×48+k2−96k=10(k2+234−6k)
⇒ k2−96k−10k2+60k=−48×48+2340
⇒ −9k2−36k=−48×48+2340
⇒ (k2+4k)=+16×16−260 [dividing by 9 in both sides]
⇒ k2+4k=−4
k2+4k+4=0
⇒(k+2)2=0
∴ k=−2