Given points are
A(-2 , 3 , 5) B(7 , 0 , 1) C(-3 , -2 , -5) D(3 , 4 , 7)
line passing through the points A and B is
¯¯¯¯A+t(¯¯¯¯B−¯¯¯¯A)−2ˆi+3ˆj+5ˆk+t(9ˆi−3ˆj−4ˆk)⇒(9t−2)ˆi+(3−3t)ˆj+(5−4t)ˆk→(1)linepassinthrough pointCandD¯¯¯¯C+S(¯¯¯¯¯D−¯¯¯¯C)−3ˆi−2ˆj−5ˆk+S(6ˆi+6ˆj+12ˆk)(6S−3)ˆi+(6S−2)ˆj+(12S−5)ˆk→(2)
given that equation (1) and (2) intersect each other at a point , so by equating the term , we get
9t−2=6S−3→ˆicoefficent3−3t=6S−2→ˆjcoefficent12t−5=−112t=4t=13puttvalueinˆkcoefficent5−413=12S−5263=12SS=1318
So , equation og the line will be
(9×13−2)ˆi+(3−313)ˆj+(5−4×13)ˆkˆi+2ˆj+113ˆkandalso43ˆi+73ˆj+113ˆk
point of intersection (1 , 2 , 3)