wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Question 5 (v)
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(v) (cosAsinA+1)(cosA+sinA1)=cosecA+cotA, using the identity cosec2A=1+cot2A.

Open in App
Solution

(v) (cosAsinA+1)/(cosA+sinA1)=cosecA+cotAL.H.S.=(cosAsinA+1)(cosA+sinA1)Dividing Numerator and Denominator by sin A,=(cosAsinA+1)sinA(cosA+sinA1)sinA=(cotA1+cosecA)(cotA+1cosecA)=(cotAcosec2A+cot2A+cosecA)(cotA+1cosecA) ( cosec2Acot2A=1)=[(cotA+cosecA)(cosec2Acot2A)](cotA+1cosecA)=[(cotA+cosecA)(cosecA+cotA)(cosecAcotA)](1cosecA+cotA)=(cotA+cosecA)(1cosecA+cotA)(1cosecA+cotA)=cotA+cosecA=R.H.S.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon