The correct option is B tan50∘
k=3+cot80cot20cot80+cot20=3+cot(90−10)cot(90−70)cot(90−10)+cot(90−70)
⇒k=3+tan10tan70tan10+tan70
⇒k=3cos10cos70+sin70sin10sin10cos70+cos10sin70
⇒k=3(cos(10+70)+cos(10−70)2)+(cos(10−70)−cos(10+70)2)sin(10+70)
⇒k=2cos60+cos80sin80=1+cos80sin80
⇒k=2cos2402sin40cos40=cot40=tan50o
Ans: B