The correct option is B 32πa2
Let I=∫2a0x32√2a−xdx
Substitute u=√x⇒du=12√xdx
I=2∫√2a0u4√2a−u2du
Substitute u=√2asint⇒du=√2acostdt
I=2√2a∫π20⎛⎜⎝2√2a32sin4t⎞⎟⎠dt=8a2∫π40sin4tdt
Using reduction formulae
∫sinmxdx=−cosxsinm−1xm+m−1m∫sinm−2xdx
I=[−2a2sin3tcost]π20+6a2∫π20sin2tdt
=0+6a2∫π20(12−12cos2t)dt
=[3a2t−3a2sintcost]π20=3πa22