The correct option is
D 124GIven:limx→∞∑nk=1k+2∑n−1k=1k..........n.1n4
To find: The value of the limit
Sol: We can write the above expressions as
limx→∞∑nk=1k(k.∑n−k+1r=1r)n4
∑nn−1(k.∑n+1−kr=1r)=∑nk=1k.(n+1−k)(n+2−k)2
⟹∑nk=1k.{n2+k2−2nk+3n−3k+22}=∑nk=1k{n2+k2−(2x+3)k+(3x+2)2}
=(2+n2+3n2)∑nk=1k+12∑nk=1k3−(2n+3)2∑nk=1n2
==(n2+3n+22)−n(n+1)2+12(n(n+1)2)2−(2n+3)2n(n+1)(2n+1)6
=(n2+3n+22)−n(n+1)2+12(n(n+1)2)2−(2n+3)2n(n+1)(2n+1)6
=n(n+1)(n2+5n+6)24
∴limn→∞∑nk=1(k.∑n−k+1r=1r)n4
=124limn→∞n(n+1)(n+2)(n+3)n2
=124limn→∞(1+1n)(1+2n)(1+3n)
=124.1
Hence, correct answer is 1/24