The correct option is
D πI=∫5π/2π2eten−1(sinx)etan−1(inx)+etan−1(cosx)dxI1=∫5π/20eten−1(sinx)etan−1(sinx)+etan−1(cosx)dx−−−−−−(i)
Using formula⇒a∫0f(x)dx=a∫0f(−x)dx
I1=5π/2∫0etan−1(cosx)etan−1(cosx)+eten−1(sinx)dx−−−−−(ii)
Using cos(5π/2−x)=sinx,sin(5π/2−x)=cosx
Adding(i)or(ii)
2I1=∫5π/20etan−1(sinx)+eten−1(cosx)eten−1(cosx)+etan−1(sinx)dx
⇒2I1=5π2−0⇒I1=5π4
I2=∫π/20eten−1(sinx)eten−1(cosx)+eten−1(sinx)dx−−−−(iii)
Again using formula ∫a0f(n)dx=∫a0f(a−x)dx
I2=∫π/20eten−1(cosx)eten−1(sinx)+eten−1(cosx)−−−−−(iv)
∵sin(π/2−x)=cosx
Adding(iii)or(iv).
2I2=∫π/20etan−1(sinx)+etan−1(cosx)etan−1(sinx)+etan−1(cosx)dx
⇒I2=π/4
So,
I=∫0π/2+∫5π/20=−∫π/20+∫5π20
⇒I=−π/4+5π4⇒I=4π4⇒I=π
Hence,
C is correct options