The correct option is
A √32∑x=3π4,∑tanx=5,tanxtanytanz=1
Using the expansion of tan(x+y+z),
tan(x+y+z)=∑tanx−tanxtanytanz1−tanxtany−tanxtanz−tanytanz
Substituting the given values we get,
tanxtany+tanxtanz+tanytanz=5
Let tanx=a,tany=b,tanz=c
It can be observed that a,b,c are roots of the equation,
m3−5m3+5m2−1=0
Roots of which are,
1,2±√3
As x<y<z and tan is increasing function
tanx=2−√3,tany=1,tanz=2+√3
sinx=√6−√24,cosy=1√2
sinz=√6+√24,siny=1√2
sinxcosy+sinzsiny=√32